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Abstract

The purpose of this paper is to investigate some central differential identities involving a
fixed element of R, more precisely, we will prove that, if a is a fixed element of R satisfying
some special differential identities then a is central. Moreover, the classifications of the
involved derivations are also provided.
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1 Introduction

Rings considered in this paper are associative and not necessarily unitary. We shall denote
by Z(R) the center of a ring R. An ideal P of R is a prime ideal if zRy C P yields x € P
or y € P. In particular, if the zero ideal of R is prime, then R is said to be a prime ring.
For any z,y € R, we will write [z,y] = 2y — yz and z o y = 2y + yx for the Lie product
and Jordan product, respectively. An additive mapping d : R — R is a derivation if
d(zy) = d(x)y + zd(y) for all z,y € R.

Over the last years, several authors have investigated the relationship between the com-
mutativity, the structure of the ring R and certain special type of maps on R. We first
recall that a mapping f : R — R is called centralizing on R, if [f(z),z] € Z(R) for all
z € R; in the special case where [f(z),z] = 0 for all z € R, the mapping f is said to
be commuting on R. In [12], Posner proved that if a prime ring R admits a nonzero
centralizing derivation d on R, then R is commutative. Since then many authors have
extended the Posner’s result in several directions. A considerable number of researchers
have investigated and proved that some subsets of a ring R, defined by certain sort of
commutativity condition, coincide with its center Z(R). In [6], Herstein showed that, if
R is a ring with no nonzero nil ideal, then the hypercenter+

S(R):={a € R|[a,2"] =0 for all z € R and an integer n > 1}
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coincides with the center Z(R) of R. Motivated by Herstein’s hypercenter, Chacron [4]
introduced a more general concept that he called the cohyper-center T(R) of R defined by

T(R):={a € R| [a,2 — 2?p(x)] = 0 for all x € R and p(z) € Z[z] depends on (a,z)}.

He proved that the cohypercenter of a semiprime ring R is exactly the center of R. In [9],
Herstein introduced the set

H(R;d):={a € R | ad(xz) = d(x)a for all z € R},

where d is a nonzero derivation on R, he was been able to prove that if R is a 2—torsion
free prime ring then H(R;d) = Z(R).
Recently, Idrissi et al. [10], introduced and studied the following new center-like subsets:

ZY(R,d) :={y € R | [d(z),d(y)] + [z,y] € Z(R) for all z € R}.
Z7(R,d) :={y € R | [d(x),d(y)] — [x,y] € Z(R) for all x € R}.

2" (R,d) :=={y € R | [d(x),d(y)] — [y, d(z)] — [d(y),z] € Z(R) for all z € R},

where d is a derivation of R, they actually proved that if R is a 2-torsion free prime ring
then Z~(R,d) = Z*(R,d) = Z(R). Moreover, if d # 0 then Z*~(R,d) = Z(R).

In this paper, we continue the investigation about theses subsets by studying the behavior
of a fixed element a € R satisfying some differential identities in prime rings.

2 The Main results

Before starting the proofs, we need to recall the following well-known facts.

Fact 1. [11, Theorem 1] Let R be a 2-torsion free noncommutative prime ring, a a nonzero
element of R, d a nonzero derivations of R such that [a,d(R)] C Z(R), then a € Z(R).

Fact 2. [13, Lemma 1] Let R be a semiprime ring and a,b,c € R. If axb + bxc = 0 for
all x € R then (a + c)xb =0 for all z € R.

Fact 3. Let R be a prime ring. If ab € Z(R) and a € Z(R) then a =0 or b € Z(R).

It is proved in [1], that if R is a 2-torsion free prime ring, d a nonzero derivation and a
an element of R satisfying d([z,a]) € Z(R) for all z € R, then a is a central element. In
the next Theorem, we investigate a more general identity with two derivations.

Theorem 1. Let R be a 2-torsion free noncommutative prime ring, a a nonzero element
of R, di and dy are nonzero derivations of R such that di(za) — d2(az) € Z(R) for all
x € R, then one of the following assertions holds:

1. a € Z(R) and di = da;

2. There exists A € C such that di(x) = Nz, a] and da(x) = Ma, ] for all x € R and
a’ e Z(R).



On derivations and commuting like elements in prime rings

Proof. Suppose that
di(za) — dz2(az) =0 for all z € R. (1)

Replacing x by xa, we get
zady (a) — axdy(a) = 0 for all x € R. (2)
Writing uz instead of z in the above equation, with u € R, we get
[, alzde(a) = 0 for all z,u € R. (3)
Hence, a € Z(R) or da(a) = 0. If a € Z(R), Eq. (1) becomes
(d1 — dg)(az) =0 for all z € R. (4)

Which leads to d1+ds = 0. Now, suppose that a ¢ Z(R) then d2(a) = 0 and the hypothesis
becomes
dy(za) — ada(x) =0 for all x € R. (5)

Now, replace = by az in Eq. (5), to obtain d;(a) = 0, then the equation reduces to
di(z)a — ady(z) =0 for all z € R. (6)
Writing uzx instead of = in the last equation and using it, we get
dy(u)[x,a] + [u,a]lde(z) =0 for all z,u € R. (7)
Now, instead of u we put xzu in the last equation and we use it to get
di(x)ulz,a] + [z, alude(xz) = 0 for all z,u € R. (8)
Hence, by Fact (2) we have dj + da = 0. Invoking Eq. (6), we find that
di(x)oa =0 for all z € R. 9)

Replacing x by xu in the last relation and using ([3], Lemma 2.2), there exists A € C such
that di(z) = Az, a] for all z € R and so da(z) = Aa, 2] for all x € R. Remark that Eq.
(9) leads to a® € Z(R).
Now, if Z(R) = (0), then from the first part of this proof, we conclude the desired result.
So, assume that Z(R) # (0)

di(xza) — da(azx) € Z(R) for all z € R. (10)
Let z(# 0) € Z(R). Putting xz instead of z in Eq. (10), we get

zadi(z) — axds(z) € Z(R) for all z € R. (11)

Replacing = by z, we get

az(d; — d2)(z) € Z(R) for all x € R. (12)

Which yields to a € Z(R) or (di — dg)(z) = 0 for all 2(# 0) € Z(R).
If a € Z(R), then Eq. (10) becomes

a(dy — dg)(z) + x(dy — dg)(a) € Z(R) for all z € R. (13)
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Commuting with x, we get
al(di — d2)(x),z] =0 for all z € R. (14)

Which leads to d; = ds.
Now, suppose that a ¢ Z(R), then (d1 — d2)(z) = 0 for all z(#£ 0) € Z(R) thus Eq. (11)
becomes

[x,a]di(z) € Z(R) for all x € R. (15)

Which means d;j(z) = 0, and so d2(z) = 0. Then, by replacing = by z in Eq. (10), we get
(d1 — d2)(a) € Z(R). Now, we replace x by xza in Eq. (10), we have

di(za)a + (za)di(a) — d2(ax)a — (ax)dz(a) € Z(R) for all z € R. (16)
Then, we replace x by az in the same equation, and we have
dy(a)(za) + adi(za) — de(ax)a — (az)d2(a) € Z(R) for all x € R. (17)
By combining the last two equations, and using Eq. (10) commuted with a, we find
[za,d1(a)] — [ax,d2(a)] € Z(R) for all z € R. (18)
Since (d1 — dg2)(a) € Z(R), the last equation becomes
([z,a],d2(a)] € Z(R) for all x € R. (19)
Which yields to d2(a) € Z(R) and so di(a) € Z(R). Then, hypothesis becomes
di(z)a — ada(x) + x(dy — do2)(a) € Z(R) for all € R. (20)
We commute the last equation with r € R to get
[di(z)a,r] — [ada(z),r] + [z, 7](di — d2)(a) = 0 for all z,r € R. (21)
By putting zr instead of z and using Eq. (21), we get
[di(x)ra,r] — [di(x)ar,r] + z[di(r)a, 7] + [z, 7]d1(r)a — [axda(r),r] =0 (22)

for all z,7 € R. From Eq. (20), we have z[d1(r)a,r] — zada(r),r] = 0, and Eq. (22)
becomes
[di(2)[r, al, 7] + [, a]da(r), r] + [z, 7](di(r)a — ady(r)) = O (23)

for all z,r € R. We replace r by a, and we get
[[z,al],ald2(a) + [z, a](d1 — d2)(a)a =0 for all x € R. (24)
Replacing r by rz in Eq. (24), and using the same equation we find
2[r, a][z, a]d2(a) = 0 for all z,r € R. (25)
Which yields to da2(a) = 0, and with Eq. (24) we have d;(a) = 0. Then, Eq. (20) becomes
dy(z)a — ady(z) € Z(R) for all z € R. (26)
Replacing = by za, we get

(d1(z)a — ada(x))a € Z(R) for all z € R. (27)
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It means
di(z)a — ady(z) =0 for all z € R. (28)

Replacing = by zr in Eq. (28) and using it, we get
dy(x)[r,a] + [r,a]d2(r) = 0 for all z,r € R. (29)
Then, we replace x by rz in the last equation to find
dy(r)z[r,a] + [r,alzda(r) = 0 for all z,r € R. (30)
It yields by Fact (2) to di + d2 = 0, then Eq. (28) becomes
di(x)oa=0 for all z € R. (31)
Replacing z by zr in Eq. (31) and using it, we get
[,aldi(r) = di(x)[r,a] for all z,r € R. (32)

In view of ([3]Lemma 2.2), there exists A € C such that d;(z) = A[z, a] and da(z) = Aa, 2]
for all z € R. Then from Eq. (31), a® € Z(R).
[ |

Theorem 2. Let R be a 2-torsion free prime ring, a a nonzero element of R, dy and ds
are nonzero derivations of R such that dj(za) — da(ax) — [z,a] € Z(R) for all z € R, then
one of the following assertions holds:

1. a € Z(R) and d; = dy;

2. There exists A\ € C such that di(z) = A[z,a] and da(z) = Aa,z] for all z € R and
a’ € Z(R).

Proof. Similar to Proof of Theorem 1. [

Lemma 1. Let R be a 2-torsion free noncommutative prime ring and d a derivation on
R. There is no noncentral element a of R such that d([x,a]) + [d(z),a] € Z(R) for all
€ R.

Proof. Let a be a noncentral element of R, such that

d([z,a]) + [d(z),a] =0 for all x € R. (33)

If Z(R) = (0), then replacing x by uz, we get
d(u)[x,a] + [u,a]ld(z) = 0 for all z,u € R. (34)
In view of ([7], Lemma 1.3.2), there exists A € C, the extended centroid of R, such that
d(z) = N[z, d] for all z € R. (35)

Using the last expression in Eq. (33), we get
[d(z),a] =0 for all x € R. (36)

Which leads to a € Z(R) in view of Fact 1, a contradiction.
Now, we assume that Z(R) # (0), which means that

d([z,a]) + [d(z),a] € Z(R) for all z € R. (37)
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Let z be a nonzero element of Z(R). By replacing « by xz in Eq. (37), we get
[,a)d(z) € Z(R) for all z € R. (38)

Which yields to [z,a] € Z(R) for all x € R or d(z) = 0. Hence d(z) =0 for all z € Z(R).
Replacing = by xza in Eq. (37), we get

2[z,ald(a) + (d[z,a] + [d(z), a])a + z[d(a),a] € Z(R) for all x € R. (39)
And now replacing x by ax in Eq. (37), we get
2d(a)[z, a] + a(d[z, a] + [d(z), a]) + [d(a),alz € Z(R) for all x € R. (40)
Using the two last equations, the fact that [d(a),a] € Z(R) and Eq. (37), we find that
2[d(a), [z, a]] € Z(R) for all z € R. (41)

In view of Fact (3), we have a € Z(R), which is a contradiction, or d(a) € Z(R). Hence,
d(a) € Z(R) which means d?(a) = 0. Now, by applying d on Eq. (39) we get

(3d([z, a]) + [d(z), a])d(a) = 0 for all z € R. (42)
Since (d([z,a]) + [d(x),a])d(a) € Z(R) and R is 2-torsion free, we have
d[z,ald(a) € Z(R) for all x € R. (43)

It yields that d(a) = 0 or d[z,a] € Z(R) for all z € R, in both cases we have [d(z),a] €
Z(R) for all z € R, hence a € Z(R), a contradiction. X

Motivated by the results in [10], Ait Zemzami et al studied in [1] the behavior of a fixed
element a € R satisfying d([z, a]) — [z,a] € Z(R) for all z € R.

Theorem 3. Let R be a 2-torsion free prime ring, a a nonzero element of R, d; and ds
are nonzero derivations of R such that di([z,a]) + [d2(z),a] € Z(R) for all z € R. Then
a€ Z(R) .

Proof. Let a be a nonzero element of R. Suppose that
di([z,a]) + [d2(z),a] € Z(R) for all x € R. (44)
In first time, assume that
dy([z,a]) + [da(z),a] =0 for all z € R. (45)
Replacing x by xu, with v € R, and using last equation we get
[z, a](dq + d2)(u) + (d1 + d2)(z)[u,a] = 0 for all z,u € R. (46)
Now, replacing u by ur and using Eq. 46, we find
[, alu(dr + d2)(r) + (d1 + d2)(x)u[r,a] = 0 for all z,u,r € R. (47)
Hence, in view of ([7], Lemma 1.3.2), there exists A € C such that

(d1 + do)(z) = Mz, a] for all x € R. (48)
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Using the last equation, the hypothesis becomes
di([z,a]) — [di(z),a] + N[z, a],a] =0 for all z € R. (49)

Which implies that
[,d1(a)] + A[[z,a],a] =0 for all z € R. (50)

Replacing x by zu, we find that
2X\[z,a][u,a] = 0 for all z,u € R. (51)

Invoking the primeness of R we get a € Z(R).
Now, assume that Eq. (44) is satisfied. If Z(R) = (0), then from the first part of this
proof, we get the desired result.
So, suppose that Z(R) # (0) and let z € Z(R) \ {0}. Replacing x by zz in Eq. (44), we
get

[x,a)(d1 + d2)(2) € Z(R) for all z € R. (52)

So, [z,a] € Z(R) for all x € R or (d1 + d2)(z) = 0 for all z € Z(R). If [z,a] € Z(R)
for all x € R, then a € Z(R). Now, suppose (d1 + d2)(z) = 0 for all z € Z(R). Putting
h = di + dg, the Eq. (44) becomes
[h(x),a] + [z,di(a)] € Z(R) for all z € R. (53)
Writing za instead of = in Eq. (53), we obtain
[h(z),ala + x[h(a),a] + [z,alh(a) + z]a, di(a)] + [z,d1(a)]a € Z(R) for all z € R. (54)
Then, writing ax instead of z in Eq. (53), we get
alh(z),a] + [h(a),alz + h(a)[x,a] + [a,d1(a)]z + alz,di(a)] € Z(R) for all z € R. (55)
Now, subtracting Eq. (55) from Eq. (54) and using Eq. (53), we find that
[[z,a],h(a)] € Z(R) for all z € R. (56)

Then, by Fact(1) a € Z(R) or h(a) € Z(R). In the last case, h?(a) = 0 and from Eq. (53)
[a,d1(a)] € Z(R). By applying h to Eq. (54), and using the fact that h(a) € Z(R) we get

([h(x), a] + [, d1(a)])h(a) + h((x,a])h(a) + h(z)[a,dy(a)] = 0 for all z € R.  (57)
Since ([h(z),a] + [z, dy(a)])h(a) € Z(R) for all z € R, we have
[h(x), alh(a) + h(z)[a,di(a)] € Z(R) for all x € R. (58)
Commuting the last expression with h(z)[a, d1(a)], we get
[[h(z), a], h(z)]h(a)[a, di(a)] = O for all = € R. (59)

This leads to [[h(z),a], h(xz)] = 0 for all x € R, or h(a) = 0 or [a,d1(a)] = 0, and in the
three cases, we’ll have a € Z(R). n

Now it is natural to ask, what is going to happen if we consider the Jordan product instead
of the Lie product in the identity of the previous Theorem?
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Theorem 4. Let R be a 2-torsion free noncommutative prime ring, a a nonzero element
of R, di and dy are nonzero derivations of R such that dy(z o a) + da(x) oa € Z(R) for
all x € R, then a® € Z(R).

Proof. Let a be a nonzero element of R. If Z(R) = (0), so the hypothesis becomes
di(zoa)+dy(z)oa=0 forall z€R. (60)
Replacing x by uz, and using the hypothesis, we get
dy(u(z o a)) — di([u,a]x) + da(u)(z 0 a) — [da(u), a]z + u(da(z) 0 a) — [u,alda(z) =0
for all z,u € R. It means
(di + d2)(u)(z 0 a) — [u,a](d1 + d2)(z) — di([u, a])x — [d2(u),alz =0 (61)
for all z,u € R. Replacing = by xr in the last equation, we get
(di + d2)(u)(z 0 a)r + (di + da)(uw)z[r, a] — [u,a](d1 + d2)(x)r (62)

—[u, alz(dy + do)(r) — di([u, a])xr — [da(u),alar =0 for all x,u,r € R.
Right multiplying Eq. (61) by r, and using the last equation we get

(dy + do)(u)z[r,a] — [u,alz(d; + d2)(r) =0 for all z,u,r € R. (63)
In view of ([7], Lemma 1.3.2), there exists A € C such that
(di 4+ d2)(z) = A[z,a] for all x € R. (64)
And Eq. (60) becomes
di(zoa) —di(x)oa+ Nz,a®] =0 forall z € R. (65)

Note that, if we replace = by a in the last equation and by Leibniz’s rule, we get di(a?) =
di(a)oa=0.
Now, we replace = by za in Eq. (65) we get

di(z(aoa)) —di([z,ala) — di(x)(aca) + [di(z),a]a + [x,a]di(a) + )\[x,az]a =0 (66)
for all z € R. Which implies
Nz, a%a — [z,di(a)la =0 forall z € R. (67)

Since h : R — R, h(x) = A[z,a?] — [z,d1(a)] define a derivation, by [12, Lemma 1], we
have
Az, a?] — [z,d1(a)] =0 for all z € R. (68)

Combining last equation with Eq. (65), and after simplification we get
2zdi(a) =0 forall z € R. (69)

Which implies di(a) = 0 and by eq. (68) we get a? € Z(R).
Now, we assume Z(R) # (0) and

di(xoa)+dy(x)oa € Z(R) forall x € R. (70)
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By putting d = d; + d2 and b = dj(a), the last equation becomes
d(z)oa+zobe Z(R) forall x € R. (71)
Let z # 0 be in Z(R), then by replacing = by zz in Eq. (70) and using it, we get

(xoa)d(z) € Z(R) forall x € R. (72)

Sozoa € Z(R) for all z € R or d(z) =0 for all z(#£ 0) € Z(R). If zoa € Z(R), for all
z € Rthen a € Z(R) and so x € Z(R) for all z € R, which means that R is commutative,
a contradiction. Hence, we must have d(z) = 0 for all z € Z(R). Letting z = z in Eq.
(71) and since R is 2-torsion free we get

d(z)a+zbe Z(R) forall z € R. (73)

Which implies zb € Z(R) and by Fact (1.4) we have b € Z(R). And Eq. (71) becomes

d(x)oa+2zbe Z(R) forall z € R. (74)

Commute this expression with xb to obtain
[d(z)oa,z]b=0 forall z € R. (75)

Then either [d(z)oa,z] = 0 for all z € R, or b = 0. Remarking that even in the last case,
we have [d(z) o a,z] = 0 for all x € R and by using Fact (2), we obtain the desired result.

The following example shows that the primeness hypothesis in Theorem 1 is not super-
fluous.

Example. We consider the ring R = R[X] x M>(R), which is a noncommutative semi-
prime ring. Consider the derivation d of R defined by d(P, M) = (P’,0) for all (P, M) € R
with P’ is the usual derivation of the polynomial P.

Set A = ( 8 (1) ) For a = (0, A), and d; = dy = d we have that d;(za) — da(az) =0

for all z € R, but a ¢ Z(R).
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